Strategy: 'More than/Less than' qns on the 'change' involving Fractions

Example:

Susan baked 36 more cookies than cakes. After she gave away $\frac{4}{9}$ of the cookies and 50% of the cakes, she was left with 28 fewer cakes than cookies. How many cookies did she bake at first?

Solution:

At first

$50 \%=\frac{1}{2}$

Cookies-> $18 \mathrm{u}+36\left(\frac{9}{9}\right.$ Cookies $)$
Cakes-> 18 u ($\frac{2}{2}$ Cakes)

End (left)

Cookies-> $\frac{5}{9} \times(18 u+36)=10 u+20$
Cakes-> $\frac{1}{2} \times 18 u=9 u$

Guides

Solve from 'At first'
Step 1: Find the first common multiple (F.C.M.) of the numerators $9 \& 2$ since they represent the units of the individual item 'At first'. Take the F.C.M. as the units for the 'Cakes'.

Note: Why finding the F.C.M.? This is for easy division since both 'Cookies' \& 'Cakes' are to be divided by its fraction.

Step 2:

Since the next information given in the question is that there were 28 fewer cakes than cookies left, we can find the units that were left for the cookies and cakes respectively.

Step 3:

To find the value of 1 unit, we can solve either by using equation or models whichever is easier for your understanding()

Using models (recommendation: to draw the models using units found in Step 2).

Step 4: Find the answer to the $q n$ (i.e. find the number of cookies at first)
Cookies at first -> $18 u+36$

$$
\begin{aligned}
& =18 \times 8+36 \\
& =180 \text { (Ans) }
\end{aligned}
$$

Q\&A

End (Left)

Note: '.. 28 fewer cakes than cookies.' also means
'... 28 more cookies than cakes.'

Cookies-> $5 \mathrm{u}+28$ ($\frac{5}{9}$ Cookies $)$
Cakes-> 5u ($\frac{1}{2}$ Cakes)

Guides:

Solve from 'In the end'
Step 1: Find the fractions 'in the end (Left)' for both of the items,
Cookies left-> $\frac{5}{9}$
Cakes left-> $\frac{1}{2}$

Step 2: Find the F.C.M of the numerators 5 \& 1 since the units represent the 'left' for the cookies and cakes respectively. Take the F.C.M. as the units for the cakes.

Step 3:

Since the next information given in the question is that there were 36 more cookies than cakes at first, we can find the units for the cookies and cakes at first respectively.

Cakes-> $\frac{2}{1} \times 5 u=10 u \quad$ or $\quad \frac{1}{2}$ Cakes-> $5 u, ~ \frac{2}{2}$ Cakes-> $10 u$

Using equation (there were 36 more cookies than cakes at first, to make it equal):

Cookies $=$ Cakes
$9 u+50.4=10 u+36$
$1 u=50.4-36$

Step 4:

To find the value of 1 unit, we can solve either by using equation or models whichever is easier for your understanding-(

Using models (recommendation: to draw the models using units found in Step 3).

Step 5: Find the answer to the qn (i.e. find the number of cookies at first) Cookies at first -> $9 u+50.4$

$$
\begin{aligned}
& =9 \times 14.4+50.4 \\
& =180 \text { (Ans) }
\end{aligned}
$$

Are you ready for more

practise?

More practices

Q1) Mrs Gan made 32 fewer balloons than kites. After she gave away $\frac{3}{8}$ of the kites and $\frac{2}{3}$ of the balloons, she was left with 69 more kites than balloons.

How many kites did she make at first?
(Recommendation: Try solving from 'At first', followed by solving from 'In the end' for more practice)

Answer: 200

Q2) There were 40 more boys than girls at a school function. After $\frac{3}{4}$ of the boys and 60% of the girls left the function, there were 8 fewer boys than girls remaining behind. How many girls were there at first?
(Recommendation: Try solving from 'At first', followed by solving from 'In the end' for more practice)

Answer: 120

Q3) A total of 325 boys and girls attended a performance in the school hall. $\frac{4}{5}$ of the boys and 75% of the girls left the hall after the performance ended. There were 29 more boys than girls who remained in the hall. How many boys were there at first? (Hint: Solve from 'In the End' where the 'more than/less than' is)

Answer: 245

For more queries, you may email to mathsclinix@yahoo.com.sg or post your query in our facebook page @ https://www.facebook.com/mathsclinix where all can learn together: $($

